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A B S T R A C T

Inhomogeneous airflow distribution is common in air-conditioned rooms, especially the large open spaces. To
evaluate the thermal comfort of such space, or the control performance of the Heating, Ventilation, and Air
Conditioning (HVAC) systems in an efficient way, one will need a fast prediction method to simulate the airflow
and temperature distribution. This paper proposes a discrete state-space method, called state-space fluid dy-
namics (SFD), for the fast indoor airflow simulation. To handle time-varying velocity and temperature field, SFD
converts all the governing equations of fluid dynamics into the form of a state-space model. Four typical cases
are selected to evaluate both the accuracy and speed of SFD, compared with fast fluid dynamics (FFD), which is
another fast airflow simulation program. Results show that SFD is capable of achieving faster-than-real-time
airflow simulation with an accuracy similar to FFD. The computing time of SFD is longer than FFD when the time
step size is the same. However, SFD can generally produce better results than FFD when the time step size is
larger, which allows SFD run faster than FFD.

1. Introduction

Advanced controls of Heating, Ventilation, and Air Conditioning
(HVAC) systems are intensively being implemented to improve energy
efficiency and thermal comfort for buildings. Stratified airflow dis-
tribution, such as displacement ventilations, in a space is usually in-
troduced by those systems. To evaluate the control performance of the
systems using simulation, predictions of temperature and airflow dis-
tribution are critical. As summarized by Chen [1], there are mainly
three types of models for airflow prediction: multizone models, zonal
models, and computational fluid dynamics (CFD) models. Multizone
models are computationally fast. However, they are not suitable for the
simulation of non-uniform airflow and temperature distribution, as they
assume that the air is well-mixed [2]. Zonal models [3] divide the room
into several subzones and use empirical formulas to simulate airflow in
specific area. But users of zonal model should be aware in advance of
where the specific areas are, which is not very flexible. CFD models are
versatile and can provide the most comprehensive information. It is
nevertheless too computationally demanding to be applied in control
simulations [4].

To resolve the obstacle imposed on CFD models, many researchers
have explored various alternatives in order to reduce the computing
time for non-uniform airflow and temperature distribution. These

include the coarse-grid techniques, and some efficient equation-solving
techniques. The coarse-grid techniques are more straightforward solu-
tions to speed up CFD simulations, as calculation loads drop sub-
stantially with the decrease of grid nodes. Wang and Zhai [5] system-
atically examined the accuracy and speed improvement of coarse-grid
CFD under several cases. Coarse-grid CFD can reduce the computing
time by more than 16 times (even 100 times for some cases) compared
to fine-grid CFD and achieve acceptable accuracy at the same time
(even more accurate for some cases). However, one should bear in mind
that the pre-acquisition of the airflow prior to applying the coarse-grid
techniques is pivotal.

A more fundamental way to speed up CFD is to develop efficient
equation-solving techniques such as fast fluid dynamics (FFD) and state-
space methods. FFD uses the time splitting method and solves the
governing equations sequentially after dividing the complex equation
into several simple ones according to the number of terms in the
equation. FFD was first developed by Stam [6] for simulating fast fluid
movement in computer games. Zuo and Chen first introduced FFD into
the airflow simulation in building area, by systematically evaluating its
accuracy and speedup over CFD [7]. With a certain loss of accuracy,
FFD is found to be 50 times faster than CFD models when running on
CPU, and another 30 times speedup can be achieved if one is running
simulations on a graphics processing unit (GPU) [8]. Furthermore, Tian,
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Sevilla, Li, Zuo and Wetter [9] combined FFD with an in situ adaptive
tabulation (ISAT) algorithm that is essentially a reduced order model.
In addition, Jin, Liu and Chen [10] applied coarse grid technique to FFD
in simulation of buoyancy-driven flow in buildings to improve the FFD
speed even further. They integrated an analytical model of plume to
improve the simulation performance for the heat source whose physical
size is smaller than the mesh size. Additionally, the simulation speed
was also accelerated.

After all the descriptions above, FFD seems like a more versatile
framework with which to do fast flow simulation. However, FFD
usually requires a small time step size (sometimes as small as 0.01s)
when using semi-lagrangian method for the convection term, which
introduces a numerical viscosity related to the time step size.
Additionally, the first-order time splitting method imposes restrictions
on choosing the time step size. Thus, FFD can be costly in computation
time when simulating the slowly changing flows because of the long
simulation time required. To solve this problem, some researchers have
tried to use higher order interpolation to mitigate the numerical dif-
fusion caused by semi-lagrangian method [11] or directly replacing the
semi-lagrangian with other implicit schemes [12]. But a more compli-
cated scheme or method is likely to impact the speed and convergence.

Compared to FFD, state-space method works towards the same goal
with a different approach. Conventionally, state-space method only
solves the energy conservation equations. Precedent CFD calculations
are often utilized to calculate the mass flow rate and thermal con-
ductivity on the boundaries in order to define the mutual influence of
adjacent cells. The matrices of state-space model are generated based
on the precedent CFD results. More details of state-space method are
given in section 2.1.

Peng and van Paassen [13] used the state-space method to simulate
the dynamic response of temperature distribution for a room with
forced convection air flow. They assumed the flow field was fixed and
used CFD to pre-calculate the velocity field and turbulence viscosity.
After that, the discretized energy conservation equations were trans-
formed into the state-space model and solved. By not solving the mo-
mentum conservation equations, they saved a great amount of com-
puting time. Yao, Yang, Huang and Wang [14] also used state-space
method to calculate the dynamic response of not only the temperature
but also humidity in a three-zoned room. In addition, Parker, Lorenzetti
and Sohn [15] implemented it for the multi-zone contaminant trans-
port.

To further improve the speed of state-space method, researchers
offered several different options. Some of them [13,14] merged the
adjacent small cells into relatively large zones to directly reduce the size
of state-space model. Sempey, Inard, Ghiaus and Allery [16] used
Proper Orthogonal Decomposition (POD) method to find an optimal
basis using several snapshots extracted from precedent transient CFD
simulation result and achieved the reduced order. Parker, Lorenzetti
and Sohn [15] proposed to solve the equations analytically using the
matrix exponential and achieved speed improvement as well.

However, for the conventional way of using state-space method in
fluid dynamics, a major limitation is the assumption of fixed velocity
field. When the objective room is an open space with multiple in-
dependently controlled supply air inlets, the dimensions of the problem
increases substantially, leaving it impractical to train the model using
the pre-calculated CFD results.

In this paper, we propose to apply the state-space technique to the
Navier-Stokes equations together with all the other governing equations
in CFD. For ease of illustration, we call the proposed method State-
space Fluid Dynamics (SFD) in the rest of the paper. First, we describe
the SFD model in the methodology section. Then, we evaluate the ac-
curacy and speed of SFD by using multiple typical airflows in buildings,
including a lid driven cavity flow, a forced convection flow, a natural
convection flow, and a mixed convection flow. We compare the results
of SFD with its counterpart FFD. Finally, we propose the future work for
SFD.

2. Methodology

This section will first introduce the method of state-space model and
the governing equations of fluid dynamics. Then we will focus on the
discretization and linearization of the equations.

2.1. State-space model

As we know, the state space model is usually used to describe a
linear system represented as:

= +x A x B ut t t t t˙ ( ) ( ) ( ) ( ) ( ), (1)

where t is time, x the state vector, u the input vector, A the system
matrix, and B the input matrix. The system matrix A is used to describe
the interactions between different variables in the state vector x , while
the input matrix B represents the influences from the input vector u to
the state vector x . Matrices A and B can be time-invariant or time-
variant as shown in Equation (1). When they are time-variant, we can
also use discrete time-variant state-space model to describe the system
as Equation (2):

+ = +x A x B uk k k k k( 1) ( ) ( ) ( ) ( ), (2)

where k is the time step index, A k( ) and B k( ) are constant within the
time step k and vary before entering time step +k 1. In the context of
airflow simulation, the state vector x k( ) represents the different vari-
ables (e.g. velocity, temperature, and density) and the input vector
u k( ) represents the boundary conditions (e.g. inlet velocity and tem-
perature, and outlet pressure etc.). The convection and diffusion be-
tween cells are represented by the system matrix A k( ). The influences
from the boundary conditions are described in the input matrix B k( ).
Since the velocity and diffusion coefficients on the cell boundaries are
always changing as the flow field develops, we use the form of discrete
time-variant state-space model to fit in the descriptive equations.

Nomenclature

u v, Velocity, m/s
ρ Density, kg/m3

e Internal energy, J
T Temperature, K
R Gas constant for air, J kg/
C C,p v Specific heat at constant pressure and volume, ⋅J kg K/( )
μ Dynamic viscosity, ⋅Pa s
μt Turbulent viscosity, ⋅Pa s
λ Thermal conductivity, ⋅W m K/( )
l Length, m
Pe Peclet number

Pr Prandtl number
CTR Computing time ratio

Superscripts

−n n, 1 Time step index

Subscripts

Eff Effective
r, l, t, b Location index of the cell boundaries
R L T B, , , Location index of the cell
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2.2. Governing equations

The two-dimensional form of governing equations used in the flow
simulation are described as follows, including the Navier-Stokes equa-
tions (3) and (4), continuity equation (5), and energy conservation
equation (6). In the energy conservation equation (6), we ignore the
dissipation and the work done by surface force and body force, because
the impact of them for indoor airflow is negligible.
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where u v, are the velocity on x and y dimension, p is pressure, ⇀u is the
velocity vector, k k,x y are the body force on x and y dimension, e is the
internal energy, T is temperature, S is the heat source. The μeff is the
effective viscosity [17], which represents the turbulent influences and is
the sum of turbulent viscosity and dynamic viscosity:

= +μ μ μ.eff t (7)

The λeff is the effective thermal conductivity and calculated by:

=λ
μ
Pr

C ,eff
eff

eff
p

(8)

where Preff is the effective Prandtl number and equals to 0.9 [17]. Cp is
the specific heat.

To calculate the turbulent viscosity, we use the zero-equation model
[17] as Equation (9) because it can avoid introducing extra differential
equation. The zero-equation model is defined as:

=μ ρVl0.03874 ,t (9)

where V is the local velocity value and l is the characteristic length,
which is the distance from the center of the cell to the nearest wall.

To fit Equations (3)–(6) into the form of state-space, three criteria
should be satisfied. First, every equation should contain a first-order
differential term to fit in the form of state-space model. By setting the
fluid as compressible, each equation can have a first-order differential
term (∂

∂
ρu
t

( ) , ∂
∂
ρv
t

( ) , ∂
∂
ρ
t
, ∂

∂
ρe
t

( ) ).
Second, the equation system should be closed. As the pressure is an

unknown variable in this method, an extra governing equation should
be added. Hereby, we use the equation of state for ideal gas,

=p ρRT. (10)

Then the energy variable is represented as:

= − =e C T
p
ρ

C T,p v
(11)

where Cv is the specific heat at constant volume.
Third, the equation system should be linear. There exist some non-

linear terms in the governing equations. For example, the convection
terms in the momentum and energy conservation equations are quad-
ratic. The effective viscosity μeff and effective thermal conductivity λeff
are often non-linear depending on the turbulence model being used.

The pressure term is also non-linear, as it is the function of density and
temperature as Equation (10). In section 2.3, we will introduce the
linearization process of those terms.

2.3. Linearization of the nonlinear governing equations

This section will introduce the linearization of the non-linear terms
through the process of discretization of the governing equations.

2.3.1. Discretization of governing equations
For the discretization of the transient terms, we use a first-order

implicit scheme, which can guarantee the unconditional stability of the
simulation. A staggered grid is adopted to store the vector and scalar
variables separately as shown in Fig. 1.

A center differencing scheme is used to discretize the diffusion term.
The convection term is discretized using a hybrid differencing method
of a first order upwind differencing scheme and a second order central
differencing scheme. The switch between the two schemes is de-
termined by the Peclet number Pe:

=Pe
wρl
d

,
c (12)

where w is the velocity on the cell boundary, ρ the local density, l the
cell length, and dc the diffusion coefficient, i.e. effective viscosity μeff
and thermal conductivity λeff . The Pe represents the relative scale of
convection and diffusion in the flow motion. If > < −Pe or Pe2 2, the
flow is convection dominant and we can use the first order upwind
scheme to account for transportiveness, which is first-order accurate. If
the ∈ −Pe [ 2,2], the diffusion is comparable to the convection. Thus, a
central differencing scheme is used, which is second-order accurate.

The discretized form of Equations (3)–(6) are illustrated in Equa-
tions (13)–(15). To avoid redundancy, the discretized form of mo-
mentum Equation (4) in y direction is not presented, as it shares the
same form as momentum Equation (13) in x direction. As shown in
Equation (13)–(15), the density variables ρ in the transient terms and
convection terms in the momentum and energy equations are the
known ones from the previous time step. The effective viscosity μeff and
effective thermal diffusive coefficient λeff are also calculated using the
result from the previous time step for the purpose of convenience of
linearization afterwards. By doing so, the transient terms, the effective
viscosity μeff and effective thermal diffusive coefficient λeff are linear-
ized.

Fig. 1. Schematic of the location of discretization variables.
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Where the superscripts n" " means the current time step and −n" 1"
means the previous time step. The subscripts r l t b" , , , " represent the
“right”, “left”, “top” and “bottom” boundaries of the current cell, re-
spectively. The subscripts P R L T B" , , , , " represent the current cell and
neighboring cells on the right, left, top, and bottom, respectively.

2.3.2. Linearization of discretized equations
After discretization, we only have two quadratic terms remaining in

the equation system. One is the convection term −ρ uu( )n n1 , ρu( )n and
−ρ C uT( )n

v
n1 in momentum, continuity, and energy conservation equa-

tions, respectively. The other one is the pressure term ρRT( )n. Here we
adopted the method used in Ref. [14] to tackle with second-order
terms, when constructing the state-space model. They rewrote the state
variables as the sum of initial value (θ0) and an increment (Δθ), omitted
the higher-order term θ θΔ Δ1 2, and changed the independent variables
of the equation from the original variables themselves to the increments
of them, as Equation (16). Then the equation system was linearized.

× = + × + ≅ × + × + ×θ θ Δθ Δθθ θ θ θ θ θ θ θ( Δ ) ( Δ ) ,1 2 1
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1 2
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2
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1
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2 2
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(16)

Inspired by their work, we linearized all the quadratic terms and
altered the independent variables for our problem. The original vari-
ables, like velocity, temperature, and density, were redefined as the
initial value at the beginning of the current time step plus the increment
during the current time step. Thus, for quadratic terms like the con-
vection term, we have:
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For the pressure term, we have:
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For other terms which are originally linear, like the transient term
we have:
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For the diffusion term, we have:
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Besides the mutual influence among state variables themselves, the
boundary variables also have influences on them. Currently, the SFD
solver can deal with the following boundary conditions: (1) velocity
inlet, (2) pressure outlet, (3) Non-slip wall with known temperature, (4)
Non-slip wall with known heat flux. The reason why we don't have
outflow outlet boundary condition is that in most cases we have mul-
tiple outlets, and we don't know the flow allocation among these out-
lets, and we want it to be calculated based on the known boundary
pressure. For the velocity inlet boundary, all the variables, including
normal, tangential velocity, temperature and density, are directly im-
plemented into Equation (13)–(15). To calculate the normal velocity on
the pressure outlet, we extend the calculation domain towards the
outside direction by half of the boundary cell size and solve a mo-
mentum equation of the normal outlet velocity. For the thermal
boundary conditions, the known wall heat flux is directly taken into the
source term of the energy conservation equation. The heat transfer
coefficient on the surface with known temperature is calculated as:

=h
μ
Pr

C
xΔ

,eff

eff

p

(26)

where xΔ is the distance between the surface and the first-layer grid
[17]. All these known boundary variables are defined in the input
vector, while the variables of normal velocities on the pressure outlets
are in the state vector.

Eventually all the equations can be rewritten into the following
form as Equation (27). Since all the parts on the right side of Equation
(27) are known, the equation system can be further presented as a
linearized algebraic equation system, i.e. =Ax B, which can be solved
easily.
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Where BC represents the corresponding variables on the boundary,
which are defined in the boundary condition; MM II, are the coeffi-
cient matrices of the increment vector of state variables and boundary
input variables for the current time step, while RMM RII, are the
coefficient matrices of the initial value vector of state and boundary
input variables for the current time step.
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After all the above descriptions, we can generalize the calculation
process of SFD in Fig. 2. First, we set up the grid, define the initial and
boundary conditions and also the simulation period and time step size.
Then we discretize the equation system. After that, we linearize the
system, and change the independent variables to the increment vari-
ables of velocity, temperature and density. During each time step, we
update the coefficients in system and input matrices and reorder the
equations as =xA B. When the algebraic equation system =xA B is
solved, we have the increment results. By summing up the increments
and the values from previous time step, we obtain the result of velocity,
temperature and density for the current time step.

In current status, a SFD solver for 2-D airflow simulation has been
programmed on Matlab to test feasibility. All the following case studies
are run on Matlab and the computing time results represent the effi-
ciency of the current Matlab code.

3. Performance evaluation of SFD

We chose four cases to evaluate the performance of SFD, including a
lid driven cavity flow with Re number of 100 [18], a forced convection
flow [19], a natural convection flow [20], and a mixed convection flow
[21]. Each of them are with high quality flow and temperature data. For
each case, we first ran several SFD simulations using different mesh
grids with a relatively small time step size (0.5/1s) to investigate the
impact of grid resolution on the SFD result. Then we chose a proper grid
resolution and proceeded another several SFD simulations using dif-
ferent time step sizes to evaluate the sensitivity to time step size of SFD
converging on a stable solution. The SFD results were compared to the
original referenced data for evaluating the accuracy.

As another reference, we also conducted the corresponding FFD simu-
lation for each case. The FFD code we used was the one implemented in the
Modelica Buildings Library [22] through the research of coupling FFD with
Modelica [23]. This FFD code uses the laminar viscosity, first-order time
splitting method for solving the equations, and linear semi-lagrangian
scheme for the convection term instead of the high-order hybrid inter-
polation scheme [11] for the consideration of speed performance. The grid
and time step size settings for FFD were chosen from several FFD papers
[7,24] to keep neutral on the FFD side. We compared the final steady results
of SFD and FFD with each other using the same mesh grid and also to the
referenced data. Both the SFD and FFD results were time-averaged since the
original referenced data is steady. Hereby, the time step sizes used in SFD
and FFD are not necessarily the same. FFD runs at a smaller time step size
due to the time-splitting method and semi-lagrangian scheme it adopts,
while SFD can use a relatively large time step size since it adopts the implicit
scheme. The simulation time periods were set so that the flow field could

Fig. 2. Workflow of SFD.

Fig. 3. Schematic of lid driven cavity case.

(a) Different grid resolutions (b) Different time step sizes

Fig. 4. SFD results of U profile at x = 0.5 L (a)
using different grid resolutions with 1s time step
size, (b) using different time step sizes with 32 ×
32 grid.
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fully develop from an initially still condition to a new steady state or so SFD
or FFD could run for 100 steps, depending on which one was longer. The
computing time ratio (CTR), i.e. simulation time period divided by com-
puting time, was chosen as the index for evaluating the speed of SFD
compared to FFD. The larger the CTR it has, the faster the solver is.

3.1. Accuracy

3.1.1. Lid driven cavity
The lid driven cavity case is similar to the air circulation of a room

under a jet attached to the top. We chose the case with a Reynold
number of 100. The schematic of the lid driven cavity is shown in Fig. 3.

We took the reference data from Ghia, Ghia and Shin [18].
We ran the SFD simulations with four different meshes (16 × 16, 32

× 32, 64 × 64, and 128 × 128) using 1s as the time step size. The
result of velocity profile at the plane of x = 0.5 L is shown in Fig. 4 (a).
We can see that the numerical result is approaching the reference data
as the mesh goes finer. Then, we evaluated the sensitivity of SFD to the
time step size by running simulations with three different time step
sizes (2/10/50s) using a grid of 32 × 32. As presented in Fig. 4 (b), the
profiles overlap with each other precisely. Even at the largest time step
size of 50s, the prediction is still fairly stable and accurate. Thus, the
time step size is not found to have a large impact on the final steady
result of SFD for this case. One thing should be noticed is that when
using extremely large time step size, the numerical calculation process
is more like a steady state calculation, since no dynamic features can be
captured in this way. However, with SFD the users can have more
flexibilities to determine the time step size so that they can choose the
detailed level of dynamics to be captured.

The corresponding FFD simulation was performed using the same
grid of 32 × 32 with 0.01s time step size [24]. Fig. 5 compares the FFD
result with SFD using 2s time step size, with which it can still capture
the sufficiently detailed dynamics. FFD predicts the results slightly
better than SFD. However, since SFD can use a much larger time step
size, the CTR of SFD is 3.3, while the CTR of FFD is 1.8.

3.1.2. Forced convection
A forced convection case was derived from the experiment by Ref.

[19]. Fig. 6 shows the schematic of it. The width of the inlet, which is
located on the upper-left corner, is 0.056H. The outlet on the lower-
right corner is 0.16H wide. The height of the room H is 3 m and the
length of the entire room is 3H. The inlet velocity is 0.455 m/s, which
leads to a Reynold number of 5000 based on the width of inlet.

We conducted the SFD simulations with three different grids (18 ×
18, 36 × 36, and 72 × 72) using 1s as the time step size and the results
are presented in Fig. 7. Then the grid of 36 × 36 was selected to
proceed another four SFD simulations using different time step sizes (2/
10/50s). It was found that although the final steady results from using
the three time step sizes overlapped with each other, using time step
size of 10s or 50s would introduce observable numerical oscillation
during the beginning when the flow field was changing rapidly. Thus,
we moved back to time step size of 5s for capturing the dynamics
correctly. The corresponding steady SFD results from using different
time step sizes are not presented to avoid redundancy.

Fig. 7 (a) and (b) show the U profiles predicted by SFD at the ver-
tical plane of x = H and 2H, respectively. As the grid resolution is
doubled from 18 × 18 to 36 × 36 and 72 × 72, the U velocity profile

Fig. 5. Comparison of U profile at x = 0.5 L between SFD and FFD for lid driven cavity
case.

Fig. 6. Schematic of forced convection case.

(a) x = H (b) x = 2H

Fig. 7. SFD results of U profile (a) at x = H, (b)
x = 2H.
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at the plane of x = H starts to have a slight overshoot (36 × 36) or have
a small inverse flow (72 × 72) in the lower area, as shown in Fig. 7 (a).
However, at the plane of x = 2H shown in Fig. 7 (b), the U velocity
profile is much closer to the reference data when finer grids are used.

Fig. 8 (a) and (b) compare the results from SFD with time step size
of 5s to FFD with 0.5s using the same grid of 36 × 36 [7]. At the plane
of x = H, SFD has a slight overshoot at the lower area and an under-
estimate in the jet zone, while FFD has a better prediction in the jet
zone but a consistent underestimate for the area outside the jet zone.
For the plane of x = 2H, both of them underestimate the velocity
profile but it can be seen that SFD is better than FFD. As to the speed,
the CTR of SFD is 5.7, while FFD has a much better speed performance
with CTR of 101.5. The reason for the difference of speed performance
will be systematically discussed in the next section.

The difference of the respective deviations of SFD and FFD results
from the reference data is mainly because of the viscosity calculation

method they adopt and the numerical viscosity they introduce. It is
because of that the velocity profile is strongly impacted by the dis-
tribution of viscosity, which includes not only the one calculated by the
turbulence model but also the numerical one introduced by dis-
cretization. SFD uses the zero equation to calculate the effective visc-
osity and generates the numerical diffusion by using a hybrid scheme to
discretize the convection term. As shown in the lower part of Fig. 7 (b),
using finer grid moderates the underestimation because the numerical
viscosity is reduced as the mesh size decreases. FFD adopts the constant
viscosity and uses the numerical viscosity generated by a linear semi-
Lagrangian method to imitate the effective viscosity. As a result, when
the numerical viscosity in FFD is not at the same level as the real ef-
fective viscosity, a significant deviation will occur.

3.1.3. Natural convection
For the case of natural convection, we referenced the experiment

from Betts and Bokhari [20]. As shown in Fig. 9, it's a tall cavity with a
hot surface on the right and a cold on the left. The top and bottom
surfaces are insulated. The gravity acceleration at Y direction is 9.8 m/
s2. Thus, the expected flow field inside should be counter-clockwise.

We conducted the SFD simulations with three different mesh sizes
(20 × 10, 40 × 20 and 80 × 40) using a time step size of 1s. The grid
of 20 × 10 was chosen to proceed another three SFD simulations using
time step sizes of 2/10/50s. It was found that 50s is too large for SFD to
converge on a stable solution. The SFD result from using the time step
size of 2s was chosen to compare with the FFD result.

Fig. 10 presents the SFD results of the velocity and temperature
profiles at three planes with the respective height of y = 0.9Y, y = 0.5Y
and y = 0.1Y using different grids. It shows that the difference between
the results from different grids is not significant. It is because the cal-
culation domain of this case is relatively small and the impact from the
numerical viscosity is mitigated. The velocity profile at the plane of
y = 0.5Y in Fig. 10 (a) has a slight overshoot. One possible explanation
for the velocity profile discrepancy is the turbulence viscosity calcu-
lated by the zero-equation model is not that accurate. On the other
hand, the corresponding temperature profile at y = 0.5Y in Fig. 10 (b)
is close to the referenced data points. This is mainly because the ef-
fective conductivity and the heat transfer coefficients on the surface are
calculated by additional equations as Equations (8) and (26). By setting
the value of Preff as 0.9, it compensates the discrepancy of viscosity
distribution. In addition, it also benefits from the fact that the height of
the first grid we used for this case is suitable.

Fig. 11 compares the results from SFD and FFD using time step size
of 2s and 0.05s respectively [7]. Neither of the solvers can achieve

(a) at x = H (b) at x = 2H 

Fig. 8. Comparison of U profile at x = H (a) and
x = 2H (b) between SFD and FFD for forced
convection case.

Fig. 9. Schematic of natural convection case.
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(a) (b)

Fig. 10. SFD results of V velocity (a) and tem-
perature profile (b) at different height using dif-
ferent grids for natural convection case.

(a) (b)

Fig. 11. Comparison of V velocity (a) and tem-
perature profiles (b) at different planes between
SFD and FFD for natural convection case.
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consistently better results than the other one for all predictions. FFD
and SFD have a similar result of the velocity profiles at the plane of
y = 0.1Y and y = 0.9Y. At the plane of y = 0.5Y, FFD only over-
estimates the velocity near the vertical surface, while SFD has an
overall overshoot. For the temperature prediction, FFD has a larger
overshoot at the y = 0.5Y, while SFD has a significant underestimation
at y = 0.9Y. The difference between the velocity profiles is caused by
the calculation method for turbulence viscosity as mentioned in the
forced convection case. For the temperature profile difference, it's not
only affected by the effective thermal conductivity but also by the heat
transfer coefficient on the surface. FFD simply uses a constant surface
heat transfer coefficient for the sake of speed. Thus, more consideration
should be taken for choosing a suitable value for the coefficient, while
SFD just uses the zero-equation model to calculate it. As to the speed
performance, SFD has a CTR of 24.8, while FFD has a CTR of 58.6.

3.1.4. Mixed convection
The mixed convection flow, which is determined by both the inertial

force and buoyancy force, is deemed complex for modelling. We used
the data from Blay, Mergui and Niculae [21]. The schematic of the
investigated room is a square room with the length and height of
L = 1.04 m, as shown in Fig. 12, together with all the geometry
parameters and boundary conditions.

We performed three SFD simulations with the grids of 20 × 20, 40

× 40 and 80 × 80 using a time step size of 0.5s. Then the grid of 20 ×
20 was selected to proceed another two simulations using time step
sizes of 0.5s. In this case the time step sizes are significantly smaller
than the previous cases. It is because the initial condition is a balanced
steady-still field where all the velocities are equal to zero and all the
temperatures 15 °C. When the calculation starts, the inlet velocity and
the temperature of bottom surface jump to 0.57 m/s and 35.5 °C, re-
spectively. Thus, both the velocity and temperature field change rapidly
and have a strong mutual impact on each other. If the time step size is
too large, SFD cannot obtain a converged solution. For comparison, the
FFD simulation used a grid size of 20 × 20 and a time step size of 0.02s
[7].

The U velocity and temperature profile on the plane of x = 0.5X
predicted by SFD using the time step size of 0.5s is presented in
Fig. 13(a) and (b). When using the coarse grid of 20 × 20, SFD can
capture the general patterns of the velocity profiles but has a slight
underestimation because of the numerical viscosity. By using finer mesh
grid, the accuracy of SFD is improved. When the grid of 80 × 80 is
used, both the velocity and temperature profiles are quite close to the
reference data.

Fig. 14 (a) and (b) compare the results of SFD and FFD using the
time step size of 2s and 0.02s respectively. For the velocity prediction,
the FFD result is closer to the reference data in most areas and only
overestimates the velocity near the upper boundary. However, SFD has
a much better prediction for the temperature field than FFD. It's because
the surface heat transfer coefficients calculated by SFD and FFD are
different. For this mixed convection case, it seems that the value of the
heat transfer coefficient chosen for FFD is not large enough which leads
to an insufficient heat transfer from the bottom hot surface, while SFD
has a better prediction for it using the zero-equation model. As to the
speed performance, SFD has a CTR of 15.5, while FFD has a CTR of
13.6. The difference between them is not so significant.

3.2. Speed

To evaluate the speed of SFD, we use the CTR of FFD as a bench-
mark. Both the SFD and FFD simulations were run on a same PC with
the following specifications: Intel(R) Xeon(R) CPU E5-2609, 2.4 GHz;
16 GB RAM; 64-bit Win 7. Both SFD and FFD simulations for each case
were conducted for 5 times to obtain an averaged CTR result. The

Fig. 12. Schematic of mixed convection case.

(a) U profile (b) Temperature profile
Fig. 13. SFD results of U profile (a) and temperature profile (b) at x = 0.5 L.
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information of mesh, time step size and corresponding CTR results are
listed in Table 1.

Generally speaking, for the studied cases the current SFD code can
achieve faster-than-real-time simulation of indoor air flow. The CTR of
SFD varies from 3.3 (lid driven cavity) to 24.8 (natural convection). For
the three cases using the same time step size of 2s, the speed perfor-
mance of SFD improves as the number of mesh cells decreases. For the
forced convection case, although the number of cells (36 × 36) is larger
than the one used in the lid driven cavity case (32 × 32), the CTR for
forced convection is still larger than the other one, since a larger time
step size is used. Compared with FFD, the speed of SFD is comparable,
or for the cases of lid driven cavity and mixed convection, even slightly

better than FFD in terms of CTR. It is mainly because in those cases, the
time step sizes used by SFD are much larger than the ones by FFD, i.e.
200 times larger for the lid driven cavity case, and 100 times larger for
mixed convection. However, for the cases of forced and natural con-
vection where the multiples of the time step sizes between SFD and FFD
are not that huge, SFD is found to be not as efficient as FFD.

The reason for the difference between the speed performances of SFD
and FFD is that, during one time step, SFD solves a huge matrix simulta-
neously with all the equations (momentum, energy and continuity) in-
cluded, while FFD solves several relatively small matrices separately. For a
2-D simulation as an example, if a grid of M × N is used, the amount of
momentum equations is − ×M N( 1) and − ×N M( 1) for U velocity and
V velocity respectively and the amounts of energy and continuity equations
are both M × N. According to the time splitting method that FFD adopts,
the procedure of FFD is shown in Fig. 15 (a) and the sizes of the matrices to
be solved are also listed underneath. Instead of solving small matrices for
several times, SFD solves a large-scale matrix only once in one time step, as
in Fig. 15 (b). The size of the coefficient matrix is
“ − × + − × + × × +M N N M M N N( 1) ( 1) 2 o”, where No is the
amount of the pressure outlet, since SFD uses N-S equation to solve the
normal velocity on the outlet boundary. As a result, if no special con-
sideration is taken for method selection of solving the large-scale algebraic
equation system, the time consumed by SFD for one time step will be much

Table 1
Speed performance comparison between SFD and FFD.

Case Mesh Time step size/s CTR

SFD FFD SFD FFD

Lid Driven Cavity 32 × 32 2 0.01 3.3 1.8
Forced Convection 36 × 36 5 0.5 5.7 101.5
Natural Convection 20 × 10 2 0.05 24.8 58.6
Mixed Convection 20 × 20 2 0.02 15.5 13.6

(a) U profile (b) Temperature profile
Fig. 14. Comparison of U profile (a) and temperature profile (b) at x = 0.5 L between SFD and FFD for mixed convection case.

(a)

(b)
Fig. 15. Calculation procedure of FFD (a) and SFD (b) in one singe time step.
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longer than FFD. Thus, if the time step size for SFD is not large enough to
considerably reduce the number of time steps, the speed of SFD will not be
satisfactory.

In addition, the current SFD code simply uses the backslash opera-
tion in Matlab, i.e. x = A\\B, to solve the equation system “ =Ax B”.
This method doesn't take any advantage of the sparse characteristic of
the coefficient matrix. However, since there are a lot of available effi-
cient numerical algorithms for solving large-scale sparse matrices, an
improvement for the speed performance of SFD can be expected.

4. Conclusion and future work

We systematically evaluate the feasibility of applying the state-
space model in solving the distribution of airflow and temperature by
developing the state-space fluid dynamics (SFD) method. For the stu-
died cases, SFD can capture the general velocity and temperature pro-
files with acceptable discrepancies and achieve faster-than-real-time
airflow simulation.

SFD converts all the governing equations into the form of a state-
space model and solves all the fluid variables (velocity, temperature
and density) simultaneously during each time step. The zero-equation
model is used in SFD to model the turbulence to avoid introducing extra
equations and save the computational cost. For the discretization of
convection term, SFD adopts the hybrid scheme, which may introduce
the numerical diffusion. However, from the results of the studied cases,
the impact from the numerical diffusion can be mitigated with careful
considerations for the grid resolution and distribution (especially the
height of the first grid). For the discretization of transient term, SFD
uses the first-order implicit scheme so that it can utilize a relatively
large time step size. Thus, the users can have the flexibility to choose
different time step sizes from a wider range to determine the detailed
level of dynamics to be captured. This theoretical characteristic makes
SFD suitable for applications that adopt relatively large time step sizes,
such as coupled simulation with building energy simulation with the
consideration of inhomogeneous indoor airflow distribution.

The future works of SFD include:

1. To improve the accuracy of SFD. The current SFD code uses hybrid
scheme to discretize the convection term which will introduce the
numerical viscosity and artificially smooths the variable profile.
Thus, in the future, higher-order discretization schemes can be im-
plemented in SFD to reduce the numerical viscosity.

2. To improve the speed of SFD. The current SFD code only uses the
basic operation method to solve the algebraic equations and is im-
plemented on the platform of Matlab, which has limitations on the
computational speed. If SFD can be implemented using C/C++ and
include some efficient numerical algorithms specifically for solving
sparse matrix, an improved speed performance can be expected.
Besides, SFD can be further accelerated by taking advantages of
parallel computing techniques, like running on a graphics proces-
sing unit (GPU).

3. Applications of SFD. Since SFD can achieve real-time or faster-than-
real-time simulation speed, it can be used for control application in
co-simulation platform. By re-programming SFD in the way com-
pliant to the Functional Mock-up Interface standard (FMI), it can be
broadly adopted to perform co-simulations with many other simu-
lation programs.
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